小学数学教学资源网 手机版
类目:首页教学设计教学案例
阅读:2245  
标签:教学案例 第7册教学案例 北师大版第7册教学案例
运算律(加法交换律、结合律,乘法交换律、结合律) 单元教学案例(北师大版四年级上册)
 四  运算律

一、单元分析:

(1)课标分析:本单元教学加法交换律、结合律,乘法交换律、结合律。在学生掌握了四则计算和混合运算顺序的基础上,进一步教学运算律,有利于学生更好地理解运算,掌握运算技巧,提高计算能力。

(2)教材分析:本课是四年级上第七课,属于小学中年级的内容。在之前已经学习过加法,但是还没有接触过运算律,使用运算律可以使计算简便,这对今后的学习有重要影响。所以说本课内容是一个过渡,既要用到以前的知识,又是为今后的学习奠定基础。本课主要解决学生学会使用运算律,明白加法交换律,结合律的原因。最重要的是学会应用,使用运算律可以使计算简便。运算律对学生来说可能比较抽象,列举例子,再举例子中运用,使用各种方法计算答案。

运算律首先告诉学生学习原因,帮助学生探索运算律获得的原因,其次告诉学生运算律的好处,最重要的是教学生学会使用运算律,从生活实际出发,把生活中的问题运用运算律来解决。运算律有很多种,本节课只学习加法的交换律a+b =b+c, 加法的结合律(a+b)+c=a+(b+c),课本上举男生女生跳绳踢毽子 的例子,由学生熟悉的出发,通过不同的提问方法,最后得到相同的答案。让学生明白加法的结合律是难点,让学生学会使用又是一重点,难点。在检查一道加法题是,可以使用加法交换律验证是否算的准确

(3)学生情况分析

小学四年级是小学阶段的中年级,已经学习加法了,掌握了简单的加法,减法,乘法,除法,运算,但是还没接触过运算律,这对于学生来说是一个新东西,新概念。运算律对于四年级学生来说有些抽象,他们处于具体形象思维向抽象思维转化时期,要帮助他们完成好这个转化。既要向他们呈现具体的失事例,也要帮他们形成抽象思维的方法。

小学生对具体的事例,可爱的图片感兴趣,可以以此为切入点,一起他们的兴趣。

对于基础比较好的学生,他们可能比较容易接受,而对于之前加法学的不好的学生,这是难上加难,必须要注重这类学生的需求,从最简单的开始,帮助他们找到学习的乐趣。

(4)教学方法与手段

充分发挥学生的主体性,学生是学习的主体,到苏学生学习的方法,授之以渔,学生自主思考,解决问题,老师在旁进行指导,解答疑问。一到学生自己发现探索问题,在学习中发现问题

小组合作学习,小学生一个人解决问题可能有些困难,让小组同学在一起,既有利于学习,同时培养学生的合作精神,学会与他人一起学习。

综合运用多种方法,让学生在学习中学习。

 

第1课时   买文具 (中括号)

教学目标:

1、在解决实际问题中,认识引入中括号的必要性。

2、能进行简单的整数四则混合运算,并能解决生活中的实际问题。

3、在计算中增强学生用多种策略解决问题的意识,培养学生观察、比较及发散思维的能力。

教学重难点:简单的整数四则混合运算,并能解决生活中的实际问题。

教学准备:小黑板

教学方法:情景教学法

教学过程:

一、创设情景、激趣导入: 

电脑出示2003年2月,我国新疆喀什地区发生了6。2级的大地震,造成许多学校的房屋倒塌,为恢复学校的正常上课,党和政府紧急调动各地的帐篷,使灾区的学生能按时开学上课。你能为灾区学生做什么?(学生上网查找资料,分析处理信息,了解灾区学生的困苦。)

1、根据情景图提出问题

2、说一说了解了哪些已知条件。

二、自主学习、建立模型。

1、学生根据课本实际情景图的要求,独立列式计算完成课本提出的问题。学生大部分会列分步算式,少数学生可能会列综合算式,但由于他们未学[  ],所以在列综合算式后,发现按运算顺序来算的话,得出的结果会不同,为什么呢?学生处于“悱偾”状态,老师适时请出[  ]来帮忙,由此,学生对括号的作用印象一定非常深刻。

(首先学生独立试做,然后以小组合作的方式进行探究。)

学生自由发言,或者小组内互相说一说。

三、精讲点拨

1、引导学生观察,比较算式与以前的有什么不同?

2、启发学生想一想,通过计算对比会发现什么?

3、学生通过刚才的比较总结:算式中既有小括号又有中括号时,先算小括号里面的,再算中括号里面的。

先独立思考,再讨论交流。

学生用自己的话说一说。

4、你能为灾区学生做什么?引出书上的第4题:捐书

引导学生先说出计算的方法,然后再进行计算。

(鼓励算法多样化。指出错在哪里?怎样才能改正)

一、知识应用及拓展。

1、把算式转化成可以简便的算式,进行简便运算。

2、完成“练一练”

第1题:让学生说一说先算什么?再计算。

第2题:认真观察,小组内算一算,说一说,比一比。

第3题:在运算过程中让学生发现错误,并让学生记住一些特例。

五、小结本课:你对中括号的作用及用法掌握怎么样?

六、作业布置:配套练习

    板书设计:中括号

算式中既有小括号又有中括号时,先算小括号里面的,再算中括号里面的。

第2课时   练一练

1.口算。

24×5=  18×30=    200×6=    19×40=

25×40=  260×3=   14×30=    125×80=

2.填空。

(1)估计96×42时,这样想:96≈(    ),42≈(    )。(    )和(    )相乘得(    )。所以96×42≈(    )。

(2)30800×5的末尾有(    )个0


展开全文阅读
(3)如果两个数的乘积是一个四位数,其中一个因数是两位数,那么另外一个因数可能是(    )位数,也可能是(    )位数。

3.判断题。

(1)370×50与3700×5的积相等。      (   )

(2)89×99+89=89×(99+1)          (   )

(3)两个三位数相乘,积一定是五位数。 (   )

4.选择题。 

(1)847+853这道题可以利用(    )来简算。

①乘法交换律   ②乘法结合律   ③乘法分配律

(2)两个因数的积是480,如果其中一个因数扩大5倍,另一个因数不变,那么积是(    )

①96     ②2400   ③不能确定

(3)□÷86=240,□里应填(    )

①320    ②180   ③210

5.计算

(1)先估算,再列竖式计算。

285×48=      95×408=    360×75=

(2)用简便方法计算。   

45×102      23×98+46     25×32×125

6.应用题

(1)一个滴水的水龙头每天要白白流掉12千克水,照这样计算,一年要流掉多少千克水﹖(按365天计算)

(2)运动会举行大型团体操表演,一共有4个方阵,每个方阵有25行,每行25人,一共多少人参加表演﹖

第3课时  加法交换律和乘法交换律

教材分析:在数学基础理论中,加法交换律和结合律通常是以集合论为依据加以证明的。此外,也可以用计数公理“计数的结果与计数的顺序无关”来说明:任意两个数a与b相加,不论是a+b(相当于先数a,再数b),还是b+a(相当于先数b,再数a),结果都一样。小学数学教材一般都不出现计数公理,但无论是通过直观还是借助具体情节内容来说明加法的交换律、结合律,无形之中都用上了计数公理。其实,计数公理所反映的事实,儿童早就有所感悟,只是没有明确表达出来罢了。例1提供了概括加法交换律的具体事例。进一步,再让学生自己举例,并叙述所发现的规律。然后让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样编排,一方面有利于符号感的培养,且方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。

  教学目标:  

1、知道加法交换律、乘法交换律的内容和字母表达式。

2、能运用交换律验算加法和乘法,也可以使一些计算简便。

3、渗透分类数学思想方法。

4、培养学生根据具体情况选择算法的意识和能力,发展思维的严密性和灵活性。

教学重点:理解并掌握加法交换律、乘法交换律。

教学重点:会选择算法,使一些计算简便。

教学准备:多媒体课件、练习纸。

教学过程:

一、创设情境,感受交换

师:同学们,陈老师今天想做个小调查。我们班谁家有自行车?

生:我家有。

师:那你能告诉老师你家自行车是谁骑的吗?

生:妈妈(我)骑的。

师:妈妈(我)骑自行车,老师想把妈妈和自行车的位置交换一下,你们说可以吗?

生:不可以。

师:为什么呢?

生:因为交换位置之后就变成自行车骑妈妈了。

师:(出示课件)请同学们再看下面这句话。小明在钓鱼。“小明”和“鱼”的位置可以交换吗? 

生:不能。

师:为什么呢?

生:因为交换位置之后就变成鱼在钓小明了。

师:同学们说的真好,那么再看25这个数中的“2”和“5”的位置可以交换吗?生:不可以。

师:为什么呢?

生:因为交换位置之后就变成52了,数字变大了。

师:刚才我们讨论的几个问题能不能交换位置啊?

生:不能。

师:在数学中也有些情况不可以交换位置,但是,有些情况就可以交换位置的。今天我们就一起来探究一下数学中有关交换的问题。

二、自主探究、初探定律

1、出示:

8+18  279-17   15×4   16÷8   18+8   17-279   4×15   8÷16

师:请同学们观察这8个算式,观察后您们能进行分类吗?(学生交流)

2、点名学生上黑板进行分类。

80+65   65+80    15×4   4×15  279-17   17-279  16÷8    8÷16

师:你是按什么分类的?

生:我是按加、减、乘、除法进行分类的。

师:抽生口算前4道算式, 然后请同学们观察前面4道算式,你有什么发现?

生1:加法算式中两个加数的位置交换了,和没有变。

 生2:乘法算式中两个因数的位置交换了,积没有变。

师:后面的四道题,虽然位置交换了,可是你们现在无法计算,暂时不探究这四道题。但是你们想不想计算这四道题?(想)那你们现在就要好好学习,老师相信:你们一定行,有没有信心。(有)

(师取下这4道算式)

三、合作探究,猜想验证

1.加法交换律

师提出:在8+18=18+8这道算式中,交换了加数的位置,和不变。是不是在所有的加法算式中交换加数的位置,和都不会发生改变呢?那我们就一起来验证一下,请同学们写出几道加法算式并试着交换两个加数的位置,计算它们的结果,并验证我们的猜想。

学生交流回答,师选择算式板书:通过验证,你发现了什么规律?有没有找到交换加数的位置,和发生了变化这种情况? (没有)

师:出示算式,请同学们观察这几道算式,你发现了什么规律?(抽生回答)

生1:交换加数的位置。

生2:和不变。

师总结:两个数相加,交换加数的位置,和不变。(教师板书)

师:谁愿意为这个规律起个名称?(抽生回答)

生:加法交换律。(教师板书,全班齐读加法交换律内容)

师:你们真聪明!现在谁能用字母来表示一下加法的交换律?(抽生回答)(板书:a+b=b+a)。其实啊!我们还可以用其他的字母或者符号来表示,但我们一般都用a+b=b+a来表示加法交换律.

及时练习:学生口答。(师:请同学们观看大屏幕,口答)

  20   +   30    =    (   )   +    (    )

  524 +  678    =   (    )  +      524    

  □   + (   ) =       ○     +    (    )

  3    + (   ) =       Y      +    (    )


展开余文
师及时反馈

2.乘法交换律

1、师:我们已经验证了加法交换律,那么乘法中是否也存在着这个规律呢?下面我们就一起来验证一下。同样地,先请每位学生编出乘法算式并试着交换两个因数的位置,看看它们的结果有没有积发生了变化的这种情况?

生:没有。

师:请学生汇报情况,师板书。通过验证,你发现了什么规律?(抽生回答)

生:两个数相乘,交换两个因数的位置,它们的积不变。(教师板书)

师:谁能给这个规律起一个名称呢?(抽生回答)

生::乘法交换律(教师板书,全班学生齐乘法交换律内容 )

师:怎样用字母来表示这个规律呢? (抽生回答)

生:(a×b=b×a)

2、及时练习。(师:请同学们看大屏幕,口答)

   10    ×     5   =   (   )    ×     (    )

 (   ) ×   △   =   (   )    ×      ☆

    C ×  (  )    =       F       ×    (    )

  25  ×18  ×  4   = 25 ×(  ) × (    )

3、师小结:通过刚才的学习,我们认识了加法交换律和乘法交换律,这就是我们今天所要研究的“交换律”(板书)。下面,我们就要运用所学的知识解决几个问题。

四、巩固内化,运用定律

师:利用加法交换律和乘法交换律,我们可以检验计算是否正确。(出示课件),怎样进行验算呢?请你们完成“课堂学习单”的第一题。  

1.(1)       7 4       验算:

+  6 4 1

(2)       6 4        验算:   2 7

          × 2 7             ×  6 4                 

         4  4  8  

 1 2  8    

       1 7  2  8

2、运用定律计算。

⑴ 比一比,谁算得快?(对你的同桌说一说,将你的好方法介绍给你的同桌。)

130+86+70      25×37×4    40+35+60+265     125×23×8   

3、拓展练习:32×125          25×16×125

五、总结全课

师:同学们,请把课本翻到60和61页,就是我们今天所学的内容:交换律。你们还有什么问题吗?谁来说说你今天这堂课你的收获是什么?说一说我们一起分享一下。

第4课时   加法结合律   

教学内容:

九年义务教育五年制小学数学第七册第14一15页。

教材简析:

加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后的加法第二个运算定律,学好加法结合律,对于加法的简便运算,提高计算速度和准确程度很有帮助。

由于加法结合律是在连加法运算顺序发生变化结果不变基础上,归纳概括出来的,同加法交换律相比比较抽象,因此我在设计时,注重引导学生通过实例观察尝试探究得出加法结合律的具体内容。这样从具体到抽象,符合学生认知规律,不仅能够分散教学难点,而且能突出教学重点,解决了教学关键,更重要的是充分发挥了学生学习的主动性和能动性。

教学目的:

    1.使学生理解和掌握加法结合律,并应用结合律使计算简便。

    2.培养学生观察、归纳、概括能力以及思维灵活性。

    3.对学生进行"具体问题具体分析"的辨证唯物主义的教育。

教学重点:理解并掌握加法结合律。

教学难点:加法结合律的推导。

教学关键:通过实例引出规律。

教学过程:

一、情景引入

     1.同学们,暑假期间,我们学校举行军事夏令营活动,三年级一班有营员42人,二班有营员45人,三班有营员55人,请你计算一下,这三个班共有营员多少人?

    (1)全班试做,指名板演。

    (2)集体订正:42+45+55=142(人)

    2.师:这道实际应用题同学们做得都很好,老师这还有一道例题(出示例2),同学们看能不能用两种方法解答?

[说明:从近期生活实际入手,使学生置于情景之中,便于激发学生学习兴趣,同时为学习例2连加法做好铺垫。]

二、尝试探究构建模型

1.出示例2。

    例2.四年级一班有48人,二班有50人,三班有49人,三个班共有多少人?(用两种方法解答)

(1)全班试做。

(2)指名板演。

(3)做完的同学自己先说一说每种方法你是先算什么?再算什么?结果怎样?

(4)师:由两种算法的结果相间,可以看出这两个算式有什么关系?这种关系可      以怎样表示?(同桌相互说一说,然后指名回答)教师板书如下:(48+50)+ 49=48+(50+49)

 2.谁能编一道像例2这样的应用题,(指2至3名学生编)然后全班同学用两种方法解答。

 3.观察下面每组的两个算式,它们有什么样的关系?(投影出示)

(12+13)+14○12+(13+14)

(320+150)+230○320+(150+230)

[说明:通过编题解答,使学生初步感知加法结合律,为后面归纳概括打下基础。]

 4.归纳概括加法结合律。

(1)从黑板和投影上的算式同学们发现了什么规律?(以小组为单位说一说)

(2)指名回答发现了什么规律。

(3)教师准确口述规律,然后出示加法结合律内容。三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

我们把这样的规律叫做加法结合律。

(揭示并板书课题:加法结合律)

(4)全班整体感知加法结合律。(齐读)

[说明:由小组到个人可以从不同的角度不同的侧面发散学生的思雄,培养学生归纳概括能力。]

 5.学习加法结合律字母公式。

(1)自学(a+b)+c=a+(b+c)

(2)弄清a、b、c的意思。

 6.做一做。

根据运算定律在下面的□里填上适当的数。

(25+68)+32=25+(□+□)

130+(70+4)=(130+□)+□

 7.探究复习题的另一种简便算法。

学习了加法结合律,同学们想一想:复习题怎样计算更为简便一些?

42+45+55=42+(45+55)

[说明:学以敢用,强化简算意识。]

 8.小结:加法结合律对于我们今后的学习很有帮助,希望同学们在理解的基础上切实掌握好。

 9.质疑:还有不明白的问题吗?

[说明:清除练习中的障碍与疑点,使学生真正学懂会用。]

三、解决应用

1.应用加法的交换律和结合律,可以使一些计算简便。

2.学习例3.计算480+325+75

(1)同学们观察这道题,怎样计算比较简便?

(2)全班试做,指名板演。

(3)集体订正,并指名说出这样算的根据。

3.学习例4.计算325+480+75

(1)以小组为单位讨论一下,例4怎样算比较简便?与例3有什么不同?应用了什么运算定律?

(2)全班试做,指名板演。

(3)集体订正,说出计算时应用了什么运算定律?

[说明:把两道例题放在解决应用这个环节,有利于培养学生运用所学知识解决问题的能力。]

4.问:我们在以前学习过程中有什么地方应用过加法结合律?

5.练:(做一做)

137+31+63怎样算比较简便?用了什么运算定律?

6.读:阅读教材第14一15页,看看还有什么地方不清楚?

7.结:这节课我们学习了加法结合律,并应用运算定律进行了简便运算,希望同学们在今后计算时,要根据题目特点,灵活运用运算定律,使计算简便。

[说明:对学生进行具体问题具体分析的思想教育。]

四、综合练习

    1.根据运算定律,在下面的□里填上适当的数。

 369+258+147=369+(□+147)

(23+47)+56=23+(□+□)

 654+(97+a)=(654+□)+□

 [说明:巩固结合律,打好基础。]

 2.在符合加法结合律的等式后面打"√"号。

 a+(20+9)=(a+20)+9 ( )

 △+(○+b)=(△+□)+b ( )

(10+20)+30+40=10+(20+30)+40 ( )

 3.有一天,小明爸爸对小明说:你从1数到100,小明刚数完,爸爸便说出了这 l00个数的结果是5050,你能帮小明说明为什么算得这么快吗?

 l+2+3+4+5+…+99+100=5050

[说明:培养学生思维灵活性,防止思维定势。]

 4.用简便方法计算下面各题,说一说是怎样应用运算定律的?


展开余文
 91+89+1185+41+15+59

 168+250+32135+49+65+24+11

[说明:巩固例题,打好基础。]

5.应用加法运算定律,你能很快算出下面两个算式的和吗?

1+3+5+7+……+17+19=

2+4+6+8+……+18+20=

[说明:进一步培养学生思维灵活性创造性以及较高的抽象逻辑思维能力。]

五、全课总结

    通过这节课的学习,你有哪些新的收获?

第5课时:乘法结合律

教学内容: 探索与发现(二)乘法结合律(第46-47页)

教学目标:

1、通过探索活动,进一步体会探索的过程和方法。

2、通过探索活动,发现乘法的结合律,并用字母进行表示。

3、在理解结合律的基础上,会对一些算式进行简便计算。

教学重、难点:  

1、通过探索活动,进一步体会探索的过程和方法,发现乘法的结合律。

2、在理解结合律的基础上,会对一些算式进行简便计算。

教学方法:合作交流,共同探究

教学准备:  教学挂图,计算器

培优辅差:

教学过程:

一、假设情境,激趣导入

1、出示长方体图,让学生估计搭这个长方体用了多少个小正方体。

2、用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。

二、自主探究,合作交流

1、根据上题的规律提出假设

2、验证提出的假设是否适合其它数据

      小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。

      全班交流,并用字母表示结合律。

三、测评反馈

1、试一试第1题:

          让学生尝试用乘法结合律解决连乘运算中的简算问题。然后进行交流,概括出简算的方法。

2、进一步尝试用用乘法结合律解决连乘运算中的简算问题。

四、板书设计

乘法结合律

                    3×(5×4)=60   15×25×4=1500

                   (3×5)×4=60    15×(25×4)=1500

                    乘法结合律:(a×b)×c=a×(b×c)

第6课时:乘法分配律

教学内容

探索乘法分配律,应用乘法结合律进行简便运算。

(课文第45页的内容,及第46页的“试一试”、“练一练”等)

教学目标

1、 通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

2、 使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

3、 会用乘法分配律进行一些简便计算。

重点、难点、关键

重点:指导学生探索乘法的分配律。

难点:发现并归纳乘法分配律

教学方法:自主学习,合作探究

培优辅差:

教具准备    实物投影仪

教学过程

一、 激趣导入

教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律?

板书:探索与发现(三)

今天,又有什么发现呢?让我们一起走上探索之路。

二、自主探究,合作交流

1、 呈现课文插图(实物投影或挂图)

教师:一共贴了多少块瓷砖?你怎么算?

2、 先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。

3、 反馈交流情况。

由小组派代表汇报交流结果(有选择地板书)。

学生A: 6×9+4×9

=54+36

=90(块)

学生B:(6+4)×9

=10×9

=90(块)

要求学生结合插图说明算式的意义。

4、 指导学生结合观察算式的特点。

5、 举例验证。

让学生根据算式特征,再举一些类似的例子。

如:(40+4)×25和40×25+4×25

42×64+42×36和42×(64+36)

讨论交流:

(1) 交流学生的举例是否符合要求:

(2) 交流不同算式的共同特点;

(3) 还有什么发现?(简便计算)

6、 字母表示。

教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书。

(a+b)×c=a×c+b×c

7、 提示课题。

教师在未完成的板书中添上:乘法分配律。

 三、精彩展示

课文第46页的“试一试”。

1、(80+4)×25

(1) 呈现题目。

(2) 指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

(3) 鼓励学生独自计算。

2、34×72+34×28

(1) 呈现题目。

(2) 指导观察算式特点,看是否符合要求。

(3) 简便计算过程,并得出结果。

四、 测评反馈

1、 课文第46页的“练一练”。

第1题,简单的应用乘法分配律进行计算。

第2题,注意指导一些算式的计算方法。

99×11:可以看成(100-1)×11=1100-11

或看成99×(10+1)=990+99

38×29+38应该把算式看作:38×29+38×1

第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。

第一个问题“一共有多少瓶?”

可以直接扳书让学生进行练习,然后进行交流。

第二个问题“付1500元够吗?”

学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。

五、板书设计

                           乘法分配律

                   6×9+4×9=90   40×25+4×25=1100

                  (6+4)×9=90   (40+4)×25=1100

                   乘法分配律:(a+b)×c=a×c+b×c

第7课时:练习四

教学内容:练习四(第50-51页)

教学目标:

1、练习用乘法结合律、分配律进行简算。

2、用乘法解决实际问题。

教学重、难点:  

用乘法结合律、分配律进行简算。解决实际问题。

教学方法:自主学习,合作交流

培优辅差:

教学准备: 计算器

教学过程:

一、用乘法结合律、分配律进行简算

     做第1题:独立完成,订正时说说简算方法。

     做第3题:小组活动:比一比

     看哪个小组连的又对又快,在做题的过程中进一步理解乘法分配律适用的条件。

二、花圃中的乘法

         让学生独立完成,重点理解列式的算理,即第1个问题为什么是计算周长,第2个问题为什么是计算面积,体会周长与面积的不同含义。

三、观察与思考:

    本题是一个乘数的变化引起积的变化,渗透了一些函数的思想。

先呈现情境图,让学生观察,再根据图上给出的信息解决所提出的问题。然后引导学生思考所列算式中乘数与积的变化规律。接着,可让学生再举例来验证自己的发现。

四、课堂总结

五、板书设计

                 练习四

        一、用乘法结合律、分配律进行简算

        二、花圃中的乘法

        三、观察与思考:

 
标签:教学案例 第7册教学案例 北师大版第7册教学案例 运算律(加
链接:浏览相关课件 备课参考
下载本资料word文档(内含配套教学用图)
把本页分享到:QQ空间新浪微博腾讯微博微信
上一篇:三位数乘两位数的乘法 单元教学设计(北师大版四年级上册)
下一篇:方向与位置 教学案例(北师大版四年级上册)
小学数学教学资源网 教案分类查询
人教版| 新课标| 苏教版| 西师| 北师大| 青岛
1册| 2册| 3册| 4册| 5册| 6册| 7册| 8册| 9册| 10册| 11册| 12册
教案| 学案| 说课| 实录| 案例| 反思
红楼梦神话孔子庄子李白杜甫苏轼东坡李清照赏析唐诗宋词诗歌鲁迅小说散文文学

本站管理员:尹瑞文  QQ:8487054
联系手机:13958889955  电脑版