小学数学教学资源网 手机版
首页
试题
教案
论文
课件
语文资源
类目:
首页
》
教学设计
》
教案
阅读:1984
标签:
教案
第9册教案
北师大版第9册教案
梯形面积的计算 教案教学设计(北师大版五年级上册)
第一课时 总第 课时
教学内容:梯形面积计算公式的推导。(课本80—81页)练习十九第1—4。
教学目标:理解和掌握梯形面积公式,并能运用梯形的面积公式正确地计算梯形的面积。
通过实际操作,掌握梯形面积公式的推导过程,理解公式的来源。
教具准备:三个大小完全一样的梯形。
教学过程:
一、复习:
⒈平行四边形的面积公式是什么?
⒉三角形的面积公式是什么?它是通过怎样的转换推导出来的?为什么要÷2?
⒊求下列图形的面积(只列式)
⑴已知平行四边形的底3米,高2.4米,求面积。
⑵已知三角形的底2.5米,高0.8米,求它的面积。
二、新授
⒈问题导入。
左图是一个梯形。它的上底3厘米,下底5厘米,高 是4厘米,想一想:你能依照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它面积吗?
板书课题:梯形面积的计算
⒉指导操作实验,推导梯形面积公式。
⑴拿出两个完全相同的梯形看课本第80页图示,按照与三角形转化类似的方法旋转平移。
指导:①把两个完全相同的梯形重叠。②怎样旋转上面一个梯形?③再怎样移动?
按①重合②旋转③平移的步骤边设问、边操作,指名口述。
⑵观察分析。
A.拼成的是什么图形?这个图形的面积与原梯形的面积是什么关系?为什么有这种倍数关系存在?
B.深入比较:
①拼成的平行四边形的底跟原梯形的两底是什么关系?
②平行四边形的高与原梯形的高又是什么关系?
导出公式:
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
⑶自我梳理:
①填写教材80页中横线上的内容。
②联系三角形的面积公式,分析理解:为什么两个公式都有一个÷2?
③全班齐记公式两遍,计算前面的问题,把计算过程填写在课本上。
⒊引导学生用字母公式表示梯形的面积公式。
S=(a+b)h÷2
三、巩固练习
⒈求梯形的面积:
①上底13米,下底15米,高4米。
②上底13分米,下底2.7米,高1.5米。
③上底25米,下底14.5米,与两底垂直的一腰10米。
⒉完成做一做中的二小题。
⒊练习十九第4题。
四、总结
⒈这节课又解决了什么新问题?
⒉梯形的面积公式是什么?与三角形比较,有什么共性?解题时要特别注意什么?
五、作业
练习十九第1、2、3题
六、板书设计:
梯形面积的计算
七、教后感:
梯形面积的计算 第二课时 总第 课时
教学内容:梯形面积计算的应用(第81页的例题,练习十九第5—10题)
教学目标 :进一步熟练掌握梯形的面积计算公式,并能正确解答有关的实际应用问题。
教具准备;沟渠的实物模型
教学过程:
一、复习
⒈梯形的面积计算公式是什么?它为什么与三角形的面积公式类似,也要÷2?
⒉面积常用的计量单位有哪些?相邻两个面积单位之间的进率是多少?
填写课本第84页第6题。
⒊口答:
⑴求梯形的面积。
①a=3 b=6 h=4 ②a=9 b=10 h=0.4
⑵求三角形的面积。
①a=2.1 h=5 ②a=49 h=10
⑶求 平行四边形的面积。
①a=5 h=8 ②a=49 h=10
二、新授
⒈例题教学:
一条新挖的渠道,横截面是梯形。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?
⑴出示渠道实物模型,帮助学生理解;渠道横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高。
⑵学生独立完成例题,教师巡视、指导。
⑶指名板演,再评讲。
(2.8+1.4)×1.2÷2
=4.2×1.2÷2=2.52( 平方米)
⒉学生质疑。
三、巩固练习
⒈完成练习十九第7题,先计算,再填表。
⒉完成练习十九第8、9、10题。
教师讲评并作全课总结。
四、板书设计:
梯形面积的计算
五、教后感:
展开全文阅读
梯形面积的计算 第三课时 总第 课时
教学内容:混合练习(课本第84—85页,练习十九第11—18题)
教学目标:⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。
⒉在复习与梳理中学会联系,进而提高综合分析解题能力。
教学过程:
一、复习梳理
⒈公式的复习
我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?
师生共同进行:边回顾、边画图、边讨论;
⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们 必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。
二、练习巩固
⒈独立完成练习十九的第12题——看谁正确率最高!
要求:开列已知条件;写出相应的面积公式;列式解答。
⒉完成第14题
先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。
⒊完成第13和15题
在求得面积之后,怎样选择算法求解。
三、综合提高:
讨论:
⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?
⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?
⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?
四、总结:
多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。
五、板书设计:
梯形面积的计算
六、教后感:
标签:
教案
第9册教案
北师大版第9册教案
梯形面积
链接:
浏览相关课件
备课参考
下载本资料word文档
(内含配套教学用图)
把本页分享到:
QQ空间
新浪微博
腾讯微博
微信
上一篇:
步测和目测 教案教学设计(北师大版五年级第九册)
下一篇:
三角形面积的计算(第一课时) 教案教学设计(北师大版五年级第九册)
小学数学教学资源网 教案分类查询
人教版
|
新课标
|
苏教版
|
西师
|
北师大
|
青岛
1册
|
2册
|
3册
|
4册
|
5册
|
6册
|
7册
|
8册
|
9册
|
10册
|
11册
|
12册
教案
|
学案
|
说课
|
实录
|
案例
|
反思
红楼梦
,
神话
,
孔子
,
庄子
,
李白
,
杜甫
,
苏轼
,
东坡
,
李清照
,
赏析
,
唐诗
,
宋词
,
诗歌
,
鲁迅
,
小说
,
散文
,
文学
,
本站管理员:尹瑞文 QQ:
8487054
联系手机:
13958889955
电脑版