小学数学教学资源网 手机版
首页
试题
教案
论文
课件
语文资源
类目:
首页
》
教学设计
》
教案
阅读:1260
标签:
教案
第9册教案
人教新课标第9册教案
第5课时长方体和正方体统一的体积公式 教案教学设计(人教新课标五年级上册)
教学目标
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点 理解底面积。
教学用具 投影仪
教学过程
一、创设情境
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)
2、填空。
(1)长、正方体的体积大小是由( )确定的。
(2)长方体的体积=( )
(3)正方体的体积=( )
二、探索研究
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:
V = sh
三、课堂实践
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结
学生小结今天学习的内容
五、课后实践
做练习七的第10、11、12题。
板书设计:
长方体和正方体统一的体积公式
长方体(或正方体)的体积=底面积×高
V = sh
第6课时 体积单位间的进率
教学目标
1、了解并掌握体积单位间的进率。
2、理解并掌握体积高级单位与低级单位间的化和聚。
3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学过程
一、知识准备
1、同学们今天我们要学习相邻体积单位间的进率。(板书课题)
2、看了课题,能回忆回忆我们都学习过哪些相邻单位间的进率呢?
3、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、液体体积单位间的进率。
4、说说这些已经学过的相邻单位间的进率是多少?(教师板书)
板书:长度单位
1米=10分米 1分米=10厘米
面积单位
1平方米=100平方分米
1平方分米=100平方厘米
质量单位
1吨=1000千克 1千克=1000克
液体体积单位
1升=1000毫升
5、猜想今天我们学习的相邻体积单位间的进率可能是多少?
6、提炼猜想,为研究作好必要的准备。
学生出现的猜想:1立方米=1000立方分米
1立方分米=1000立方厘米
二、实践探究、学习新知
(一)探究立方分米与立方厘米间的进率
1、指导学生分组进行探究,出示自学纲要:
①棱长1分米的正方体的体积是多少?
②棱长10厘米的正方体的体积是多少?
③1立方分米与1000立方厘米,哪个大?为什么?
2、学具提供:
①教师提供1立方分米的正方体2个,一个标上棱长1分米,一个标上棱长10厘米,供学生观察使用。
②挂图,让学生可以观察分析,从而为得出结论提供感官上的支持。
3、交流学习结果,分组汇报:
因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米
10厘米×10厘米×10厘米=1000立方厘米
所以:1立方分米=1000立方厘米
4、让学生在回顾一下思维的过程,再说说自己的理解。
(二)独立探究立方米与立方分米之间的进率
1、教师提问:请同学们猜想一下,立方米与立方分米之间的进率
2、用什么方法可以验证自己的想法是正确的呢?
3、学生自己尝试解决问题
4、交流各自的思维过程:
棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)
5、小结:相邻的两个体积单位之间的进率是1000。
6、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?
7、完成书上31页练习七的第1题
让学生独立完成填表,让学生联系填表的过程再一次说说长度单位、面积单位、体积单位之间的联系与区别。
(三)完成书上30页练一练
1、让学生先想一想:审题时先注意什么?试着说说要解决这些题目的过程和算理。
2、在学生独立完成的基础上,适当总结把相关体积单位进行换算的基本思考方法。要提醒学生运用小数点的位置移动的方法计算一个数乘或除以1000的得数。
展开全文阅读
3、小结:体积单位间的进率转化与我们学过的长度单位、面积单位、质量单位之间的转化有什么相同处与不同处。
三、解决实际问题,巩固所学方法
1、完成31页第2题
让学生先审题,观察这一组题目有什么特点?在解决的过程中要突出面积单位换算与体积单位换算的区别,还可以让学生认识到:把高级单位的数量换算成低级单位的数量,都要乘相应的进率。
2、完成31页第3题
让学生独立完成这一题。说说自己的思考的过程。帮助学生巩固方法,形成技能。
3、完成31页第4题
让学生在练习中回顾升与毫升的关系,进一步掌握升、毫升与本单元所学的立方分米、立方厘米的关系。
四、全课总结
今天的学习中你有什么收获?学到了什么?还有哪些疑惑?
五、布置课堂作业(略)
板书设计:
体积单位间的进率
长度单位
1米=10分米 1分米=10厘米
面积单位
1平方米=100平方分米
1平方分米=100平方厘米
质量单位
1吨=1000千克 1千克=1000克
液体体积单位
1升=1000毫升
第7课时 容积和容积单位
教学目标 ①使学生认识常用的容积单位:升、毫升。②掌握升与毫升间的进率以及它们和体积单位的关系。③理解容积和体积的概念既有联系又有区别。
教学重点 容积和体积概念的联系与区别。
教学用具 容纳1升液体的量杯和1000毫升液体的量筒各一个。一个长20厘米、宽18厘米、高10厘米的长方体纸盒和木盒各一个。
教学过程
一、创设情境
1、填空。
(1)( )叫做物体的体积。
(2)常用的体积单位有( )、( )、( ),相邻的两个体积单位间的进率是( )。
2、一个长方体纸盒,它的长是2分米,宽是1.8分米,高1分米,它的体积是多少?
二、探索研究
1、教学容积的概念。
(1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?
师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。
(2)学生举例。
①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)
(3)容积的计算方法。
师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
师:这是为什么?(出示一个木盒)
2、教学容积单位(板书课题)
(1)翻开书第40页,让学生看第三自然段。
板书:升 毫升
(2)出示量杯和量筒,倒入1升的水进行演示,让学生得出:1升=1000毫升。
(3)容积单位与体积单位的关系。
1升=1立方分米 1毫升=1立方厘米
3、应用。
出示例6,指一名学生读题。
(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?
(2)学生做完后集体订正。
三、课堂实践
第40页的“做一做”中的第1题、第2题;练习八的第6、7题。
四、课堂小结
学生小结今天学习的内容。
五、思考练习
做练习八的第8、9、10题。
板书设计:
容积和容积单位
升 毫升
1升=1立方分米 1毫升=1立方厘米
标签:
教案
第9册教案
人教新课标第9册教案
第5课时长
链接:
浏览相关课件
备课参考
下载本资料word文档
(内含配套教学用图)
把本页分享到:
QQ空间
新浪微博
腾讯微博
微信
上一篇:
第8课时长方体和正方体的复习课 教案教学设计(人教新课标五年级第九册)
下一篇:
第3课时体积和体积单位 教案教学设计(人教新课标五年级第九册)
小学数学教学资源网 教案分类查询
人教版
|
新课标
|
苏教版
|
西师
|
北师大
|
青岛
1册
|
2册
|
3册
|
4册
|
5册
|
6册
|
7册
|
8册
|
9册
|
10册
|
11册
|
12册
教案
|
学案
|
说课
|
实录
|
案例
|
反思
红楼梦
,
神话
,
孔子
,
庄子
,
李白
,
杜甫
,
苏轼
,
东坡
,
李清照
,
赏析
,
唐诗
,
宋词
,
诗歌
,
鲁迅
,
小说
,
散文
,
文学
,
本站管理员:尹瑞文 QQ:
8487054
联系手机:
13958889955
电脑版