小学数学教学资源网 手机版
类目:首页教学设计教案
阅读:960  
标签:教案 第12册教案 人教新课标第12册教案
立体图形的表面积和体积(容积) 教案教学设计(人教新课标六年级下册)
 综合练习

练习目标:

通过综合练习进一步理解立体图形的表面积和体积(容积)的概念,熟练地掌握计算方法,并能应用求积公式解答实际问题;进一步发展空间概念,培养抽象思维能力。

练习过程:               

一基础练习

1.表面积与体积的意义。

(1)什么叫做立体图形的表面积?并举例说明。(一个立体图形所有的面的面积总和,叫做它的表面积;例如:……)

(2)什么叫做立体图形的体积?并举例说明。(一个立体图形所占空间的大小叫做它的体积;例如……)

2.长方体、正方体的表面积,圆柱的侧面积、表面积。

出示下面三个图形,各请两位同学看下面图按要求写出公式,其余同学完成课本上练习,然后评定。

图     长方体                  正方体              圆柱

(1)长方体、正方体表面积公式。

S长=(ab+ah+bh)×2     S正=6a平方

(2)圆柱的侧面积、表面积公式。

S圆柱体=2πrh=πdh=Ch       S圆柱表=2πrh+2πr(平方)

3.长方体、正方体、圆柱、圆锥的体积。

(1)出示上面三个立体图形并另加一个与圆柱等底等高的圆锥体。

(2)请两位同学到黑板写出上面四个图形的体积公式,以及长方体、正方体、圆柱的统一求积公式。其余同学完成书本上的体积公式填空。

① V长=abh

② V正=a立方      V=S底h

③ V圆=S圆h

④ V圆锥= V圆柱= Sh

4.口算求积。

(1)一个长方体容器,从里面量长与宽都是5厘米,高是2分米,求这个容器的容积是多少。

(2)一个圆柱形石柱,底面半径是2分米,高1米,这个石柱所占的空间有多大?

① 计算时要注意什么?

② 这里的“空间”指什么?结果是多少?

(3)一个圆锥形铅锤高3厘米,底面直径2厘米;这个铅锤有多大?

二实际应用。

1.要做一个底面周长是18分米、高是3分米的长方体框架,至少需要多少分米长的铁丝?

(这是道求棱长总和的问题,关键要把底周长懂得看成它等于两条长与两条宽四条棱长的和,这样就不难求出铁丝长。)

2.将15.7毫升溶液倒入内直径为2厘米的圆柱形玻璃管内,玻璃管内浓液的高是多少厘米?

(这是一道可看成知道容积(体积),还应先求出圆柱形玻璃管的底面积(2÷2)平方×3.14=3.14(平方厘米),然后求溶液高的应用题。)

3.一个圆柱形大油罐的底面周长62.8米,高4.5分米。做这样一个油罐至少需要多少平方米钢板?如果每立方米可装石油700千克,这个油罐可装石油多少吨?

(这道题前半题是求油罐的表面积,后半题是求重量问题,它涉及到先求容积才能解答,学生很容易表面积与容积混淆,所以要求学生认真审题,并注意单位使用。)

4.用3个相同的正方体,粘接成一个长方体,粘接成的长方体总棱长40分米。这个长方体的表面积与体积各是多少?

(学生独立解答此题可能有困难,可先通过实物演示或画图来启迪思维。求表面积与体积关键是求一条棱长有多少长,而由于3个粘在一起,这样长方体棱长总和比没粘在一起前的3个小正方体棱长总和减少16条原正方体棱长;12×3-16=20(条),即长方体总棱长包含着20条原正方体的棱长,所以正方体一条棱长为(40÷20=2),40÷(12×3-4×4)=2(分米),所以,

表面积:长×宽×4+宽×高×2=2×3×2×4+2×2×2=56(dm平方)

或:棱长×棱×6×3-棱长×棱长×4=2×2×6×3-2×2×4=56(dm平方)

体  积:长×宽×高=2×3×2×2=2456(dm立方)

或:棱长×棱长×棱长×3=2×2×2×3=24(dm立方)

此题运用了拼合(切分)的思维方法,关键在于弄明白拼合(切分)会减少(会增加)几个面的面积)新课标第一网

 
标签:教案 第12册教案 人教新课标第12册教案 立体图形
链接:浏览相关课件 备课参考
下载本资料word文档(内含配套教学用图)
把本页分享到:QQ空间新浪微博腾讯微博微信
上一篇:式与方程 教案教学设计(人教新课标六年级下册)
下一篇:统计与概率 教案教学设计(人教新课标六年级下册)
小学数学教学资源网 教案分类查询
人教版| 新课标| 苏教版| 西师| 北师大| 青岛
1册| 2册| 3册| 4册| 5册| 6册| 7册| 8册| 9册| 10册| 11册| 12册
教案| 学案| 说课| 实录| 案例| 反思
红楼梦神话孔子庄子李白杜甫苏轼东坡李清照赏析唐诗宋词诗歌鲁迅小说散文文学

本站管理员:尹瑞文  QQ:8487054
联系手机:13958889955  电脑版