小学数学教学资源网 手机版
类目:首页教学设计教案
阅读:94  
标签:教案 第11册教案 人教新课标第11册教案
正比例和反比例的意义 教案教学设计(人教新课标六年级上册)
 2. 

教学内容:成正比例的量

教学目标:

1.使学生理解正比例的意义,会正确判断成正比例的量。

2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

教学重点:正比例的意义。

教学难点:正确判断两个量是否成正比例的关系。

教学过程:

一揭示课题

1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的此导下,学生会举出一些简单的例子,如:

(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二探索新知

1.教学例1

(1)出示例题情境图。

问:你看到了什么?

生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)出示表格。

高度/㎝ 2 4 6 8 10 12

体积/㎝3 50 100 150 200 250 300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25㎝2。

板书: 

教师:体积与高度的比值一定。

(2)说明正比例的意义。

① 在这一基础上,教师明确说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

② 学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素:

第一, 两种相关联的量;

第二, 其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。

第三, 两个量的比值一定。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

 

(4)想一想:

师:生活中还有哪些成正比例的量?

学生举例说明。如:

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

2.教学例2。

(1)出示表格(见书)

(2)依据下表中的数据描点。(见书)

(3)从图中你发现了什么?

这些点都在同一条直线上。

(4)看图回答问题。

① 如果杯中水的高度是7㎝,那么水的体积是多少?

生:175㎝3。

② 体积是225㎝3的水,杯里水面高度是多少?

生:9㎝。

③ 杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

生:水的体积是350㎝3,相对应的点一定在这条直线上。

(5)你还能提出什么问题?有什么体会?

通过交流使学生了解成正比例量的图像特往。

3.做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

 

比值表示每小时行驶多少千米。

(2)表中的路程和时间成正比例吗?为什么?

成正比例。理由:

① 路程随着时间的变化而变化;

② 时间增加,路程也增加,时间减少,路程也随着减少;

③ 种程和时间的比值(速度)一定。

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

4.课堂小结

说一说成正比例关系的量的变化特征。

三巩固练习

完成课文练习七第1~5题。

教学内容:成反比例的量

教学目标:

1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。

2.根据反比例的意义,正确判断两种量是否成反比例。

教学重点:反比例的意义。新课标第一网

教学难点:正确判断两种量是否成反比例。

教学过程:

一导入新课

1.让学生说一说成正比例的两种量的变化规律。

回答要点:

(1)两种相关联的量;

(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;

(3)两个量的比值一定。

2.举例说明。

如:每袋大米质量相同,大米的袋数与总质量成正比例。

理由:

(1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;

(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数减少,大米的总质量也相应减少;

(3)总质量与袋数的比值一定。xkb1.com

所以,大米的袋数与总质量成正比例。

板书: 

3.揭示课题。

今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?

板书课题:成反比例的量


展开全文阅读
二探索新知

1.教学例3。

(1)出示课文例题情境图。

问:从图中你看到了什么?

① 把相同体积的水倒入底面积不同的杯子。

② 杯里水的高度不相同。

③ 杯子底面积小的,水的高度比较高,杯子底面积大的,水的高度比较低。

(2)出示表格。

高度/㎝ 30 20 15 10 5

底面积/㎝2 10 15 20 30 60

体积/㎝3

请学生认真观察表中数据的变化情况。

问:你有什么发现?

学生不难发现:底面积越大,水的高度越低,底面积越小,水的高度越高,而且高底和底面积的乘积(水的体积)一定。

教师板书配合说明这一规律:

30×10=20×15=15×20=……=300

(3)归纳反比例的意义。

在这一基础上,教师明确说明反比例的意义,并板书。

因为水的体积一定,所以水的高度随着底面积的变化而变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

(4)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的乘积(一定),反比例关系的式子可以怎么表示?

学生探讨后得出结果。

X×Y=K(一定)

2.想一想。

师:生活中还有哪些成反比例的量?

在教师的引导下,学生举例说明。如:xkb1.com

(1)大米的质量一定,每袋质量和袋数成反比例。

(2)教室地板面积一定,每块地砖的面积和块数成反比例。

(3)长方形的面积一定,长和宽成反比例。

3.你还有什么疑问?

如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察课文“你知道吗”中的图像。

(1)反比例关系也可以用图像来表示。

(2)表示两个量的点不在同一条直线上,点所连接起来是一条曲线。

(3)图像特征不要求掌握。

4.课堂小结。

说一说成反比例关系的量的变化特征。

三巩固练习

完成课文练习七第6~11题。

教学内容:练习课(一)

教学目标:

1.使学生进一步理解反比例的意义,能正确判断两种量是否成反比例。

使学生能正确判断两种量是否成比例,成什么比例,提高学生的分析能力。

教学过程:

一、基础练习

1.填一填,说一说。

(1)每箱木瓜的个数一定,运来木瓜的箱数和木瓜总个数如下表。

箱数/箱 4 8 16 32

总个数/个 32 64

① 把表格填写完整,说一说你是怎么做的。

② 说一说箱数和总个数的变化情况。

③ 这里哪一个量不变?

④ 箱数和总个数成什么比例?

(2)木瓜的总个数一定,每箱个数与所装的箱数情况如下表。

每箱个数 4 8 10 20

箱数 50 25

① 你能把表格填写完整吗?

② 说一说每箱个数和箱数的变化情况。

③ 这里哪一个量一定?

④ 每箱个数和箱数成什么比例?

(3)看一本书,每天看的页数和所看天数的情况如下表。

每天看的页数 4 8 10 16 20

所看天数 80 40 32

① 把表格填写完整。

② 说一说你是怎么做的。

③ 这里哪一个量一定,你是怎么知道的?

④ 每天看的页数与所看天数有什么关系?说明理由。

(4)征订《XX学习报》,征订的份数与应付的钱数如下表。

征订份数/份 50 40 30 20 10

应付的钱数/元 1500 1200

① 请你把表格补充完整。

② 征订的份数与应付的钱数成什么比例?说明理由。

2.正、反比例意义。

问:你是怎样判断两种量是否成正比例或反比例的?正反比例关系和反比例关系有什么不同?

过程要求:

(1)学生独立思考,尝试归纳。

(2)同学之间互相交流,学会表达。

(3)全班交流。

使学生明确几个要点:

正比例:

① 两种相关联的量。

② 一种量增加,另一种量也相应增加;一种量减少,另一种量也相应减少。

③ 两种量的比值一定。

反比例:

① 两种相关联的量;

② 一种理增加,另一种量反而减少;一种量减少,另一种量反而增加;

③ 两种量的乘积一定。

二综合练习

判断下面各题中两种量是否成下比例或反比例。

(1)每袋面粉的质量一字,面粉的总质量和袋数。(   )

(2)一个人的年龄和体重。(     )

(3)长方形的周长和宽。(     )

(4)长方形的长一定,面积与宽。(     )

(5)三角形的高一定,面积与底。(     )

(6)圆的面积与半径。(     )

过程要求:

(1)逐一出示以上各题。

(2)学生判断,并说明理由。

(3)教师小结。(方法,关键)

教学内容:练习课(二)

教学目标:

通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。

教学过程:

一、复习

判断下面每题中的两种量是成正比例还是成反比例?

1、速度一定,路程和时间。

2、正方形的边长和它的面积。

3、生产总时间一定,生产一个零件所用时间和零件总数。

4、中国儿童报的订数和钱数。xkb1.com

二、引导练习

这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。

板书课题:正、反比例的比较

出示表格。

表一:

路程/千米 40 80 160 200 320

时间/时 1 2 4 5 8

表二

速度/每时行多少千米 120 90 60 40 30

时间/时 3 4 6 9 12

1、说一说。

提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?

2、想一想:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?师板书:速度×时间=路程

     

师:当速度一定时,路程和时间成什么比例关系?

当路程一定时,速度和时间成什么比例关系?

当时间一定时,路程和速度成什么比例关系?

3、比较正比例和反比例关系。

通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?

学生同桌或前后桌讨论,教师提问并板书如下:

相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。

不同点:正比例:两种量中相对应的两个数的积一定。关系式X×Y=K(一定)

4、小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?

作业

 
标签:教案 第11册教案 人教新课标第11册教案 正比例和
链接:浏览相关课件 备课参考
下载本资料word文档(内含配套教学用图)
把本页分享到:QQ空间新浪微博腾讯微博微信
上一篇:第一单元整理和复习 教案教学设计(人教新课标六年级第十一册)
下一篇:比例的意义和基本性质 教案教学设计(人教新课标六年级第十一册)
小学数学教学资源网 教案分类查询
人教版| 新课标| 苏教版| 西师| 北师大| 青岛
1册| 2册| 3册| 4册| 5册| 6册| 7册| 8册| 9册| 10册| 11册| 12册
教案| 学案| 说课| 实录| 案例| 反思
红楼梦神话孔子庄子李白杜甫苏轼东坡李清照赏析唐诗宋词诗歌鲁迅小说散文文学

本站管理员:尹瑞文  QQ:8487054
联系手机:13958889955  电脑版